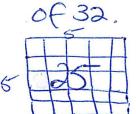

a) What is the square number that goes with the diagram?




6x6=36

Complete the following table:

b) Prove that 32 is not a perfect square number.

There is no square that Can be made with whole numbers to make an area



| - | - |   |   |   | 1 |
|---|---|---|---|---|---|
| - | - |   |   |   | + |
|   |   | 3 | t | 3 |   |
|   |   |   |   |   |   |

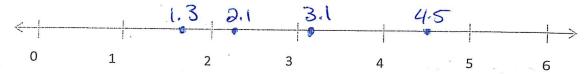
| 42             | 4 x 4   | 16  |
|----------------|---------|-----|
| 5 <sup>2</sup> | 25x5    | 25  |
| 72             | 7 x 7   | 49  |
| 11/2           | llxll   | 121 |
| 32             | 3x 3    | 9   |
| $1^2$          | 1x1     |     |
| 102            | 10 x 10 | 100 |

What are the square roots of the following:

b) 
$$\sqrt{16} = 4$$
 c)  $\sqrt{36} = 6$ 


d) 
$$\sqrt{64} = 8$$

e) 
$$\sqrt{169} = 13$$


Match each number in column 1 to the number that is equal to it in column 2.

- a) √9
- i) 9
- b) 81
- ii) 9<sup>2</sup>
- c)  $3^2$
- iii) √81
- d) 9
- iv) 3

Use the number line to complete each statement with whole numbers.



 $\sqrt{10}$  lies between  $\sqrt{9}$  and  $\sqrt{16}$  so  $\sqrt{10}$  must have a value between 3 and 4, but closer to 3.



 $\sqrt{5}$  lies between  $\sqrt{4}$  and  $\sqrt{9}$   $\sqrt{5} \approx 2.1$   $\sqrt{20}$  lies between  $\sqrt{9}$  and  $\sqrt{16}$   $\sqrt{10} \approx 3.1$   $\sqrt{2}$  lies between  $\sqrt{1}$  and  $\sqrt{4}$   $\sqrt{2} \approx 1.3$ 

Estimate the following square roots:

g) 
$$\sqrt{20} = 4.5$$

h) 
$$\sqrt{17} = 4.1$$

i) 
$$\sqrt{40} = \sqrt{3}$$

j) 
$$\sqrt{50} = 7.1$$

k) 
$$\sqrt{2} = 1.3$$

1) 
$$\sqrt{150} = /2.2$$

n) 
$$\sqrt{108} = 10.4$$

o) 
$$\sqrt{167} = 12.9$$

p) 
$$\sqrt{188} = 13.7$$

q) 
$$\sqrt{57} = 7.5$$

r) 
$$\sqrt{99} = 9.9$$

If you multiply a perfect square by a different perfect square, is the answer also a perfect square? Give examples to explain.

$$4 \times 9 = 36$$
  
 $9 \times 25 = 225$ 

